Out-of-Sample Generalizations for Supervised Manifold Learning for Classification

Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 3 vom: 01. März, Seite 1410-24
1. Verfasser: Vural, Elif (VerfasserIn)
Weitere Verfasser: Guillemot, Christine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM256855420
003 DE-627
005 20250219152513.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0856.xml 
035 |a (DE-627)NLM256855420 
035 |a (NLM)26812722 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vural, Elif  |e verfasserin  |4 aut 
245 1 0 |a Out-of-Sample Generalizations for Supervised Manifold Learning for Classification 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2016 
500 |a Date Revised 30.06.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available data; however, the generalization of the embedding to novel points, i.e., the out-of-sample extension problem, becomes especially important in classification applications. In this paper, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with an iterative process. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets 
650 4 |a Journal Article 
700 1 |a Guillemot, Christine  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 3 vom: 01. März, Seite 1410-24  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:3  |g day:01  |g month:03  |g pages:1410-24 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 3  |b 01  |c 03  |h 1410-24