Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice

Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 244(2016) vom: 01. März, Seite 31-9
1. Verfasser: Chen, Defu (VerfasserIn)
Weitere Verfasser: Li, Yanlan, Fang, Tao, Shi, Xiaoli, Chen, Xiwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Function Longevity Rice (Oryza sativa) Seed Tocopherols Tocotrienols R0ZB2556P8
Beschreibung
Zusammenfassung:Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tocopherols and tocotrienols are lipophilic antioxidants that are abundant in plant seeds. Although their roles have been extensively studied, our understanding of their functions in rice seeds is still limited. In this study, on the basis of available RNAi rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC), we developed transgenic plants that silenced homogentisate geranylgeranyl transferase (HGGT). All the RNAi plants showed significantly reduced germination percentages and a higher proportion of abnormal seedlings than the control plants, with HGGT transgenics showing the most severe phenotype. The accelerated aging phenotype corresponded well with the amount of H2O2 accumulated in the embryo, glucose level, and ion leakage, but not with the amount of O(2-) accumulated in the embryo and lipid hydroperoxides levels in these genotypes. Under abiotic stress conditions, HPT and TC transgenics showed lower germination percentage and seedling growth than HGGT transgenics, while HGGT transgenics showed almost the same status as the wild type. Therefore, we proposed that tocopherols in the germ may protect the embryo from reactive oxygen species under both accelerated aging and stress conditions, whereas tocotrienols in the pericarp may exclusively help in reducing the metabolic activity of the seed during accelerated aging
Beschreibung:Date Completed 19.09.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2015.12.005