An MM-Based Algorithm for ℓ1-Regularized Least-Squares Estimation With an Application to Ground Penetrating Radar Image Reconstruction

An estimation method known as least absolute shrinkage and selection operator (LASSO) or ℓ1-regularized LS estimation has been found to perform well in a number of applications. In this paper, we use the majorize-minimize method to develop an algorithm for minimizing the LASSO objective function, wh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 5 vom: 07. Mai, Seite 2206-21
1. Verfasser: Ndoye, Mandoye (VerfasserIn)
Weitere Verfasser: Anderson, John M M, Greene, David J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM256749752
003 DE-627
005 20250219150309.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2518862  |2 doi 
028 5 2 |a pubmed25n0855.xml 
035 |a (DE-627)NLM256749752 
035 |a (NLM)26800538 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ndoye, Mandoye  |e verfasserin  |4 aut 
245 1 3 |a An MM-Based Algorithm for ℓ1-Regularized Least-Squares Estimation With an Application to Ground Penetrating Radar Image Reconstruction 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.08.2016 
500 |a Date Revised 25.07.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An estimation method known as least absolute shrinkage and selection operator (LASSO) or ℓ1-regularized LS estimation has been found to perform well in a number of applications. In this paper, we use the majorize-minimize method to develop an algorithm for minimizing the LASSO objective function, which is the sum of a linear LS objective function plus an ℓ1 penalty term. The proposed algorithm, which we call the LASSO estimation via majorization-minimization (LMM) algorithm, is straightforward to implement, parallelizable, and guaranteed to produce LASSO objective function values that monotonically decrease. In addition, we formulate an extension of the LMM algorithm for reconstructing ground penetrating radar (GPR) images, that is much faster than the standard LMM algorithm and utilizes significantly less memory. Thus, the GPR specific LMM (GPR-LMM) algorithm is able to accommodate the big data associated with GPR imaging. We compare our proposed algorithms to the state-of-the-art ℓ1-regularized LS algorithms using a time and space complexity analysis. The GPR-LMM greatly outperforms the competing algorithms in terms of the performance metrics we considered. In addition, the reconstruction results of the standard LMM and GPR-LMM algorithms are evaluated using both simulated and real GPR data 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Anderson, John M M  |e verfasserin  |4 aut 
700 1 |a Greene, David J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 5 vom: 07. Mai, Seite 2206-21  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:25  |g year:2016  |g number:5  |g day:07  |g month:05  |g pages:2206-21 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2518862  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 5  |b 07  |c 05  |h 2206-21