Measuring and Predicting Visual Importance of Similar Objects

Similar objects are ubiquitous and abundant in both natural and artificial scenes. Determining the visual importance of several similar objects in a complex photograph is a challenge for image understanding algorithms. This study aims to define the importance of similar objects in an image and to de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 22(2016), 12 vom: 10. Dez., Seite 2564-2578
1. Verfasser: Kong, Yan (VerfasserIn)
Weitere Verfasser: Dong, Weiming, Mei, Xing, Ma, Chongyang, Lee, Tong-Yee, Lyu, Siwei, Huang, Feiyue, Zhang, Xiaopeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM25640531X
003 DE-627
005 20231224180552.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2016.2515614  |2 doi 
028 5 2 |a pubmed24n0854.xml 
035 |a (DE-627)NLM25640531X 
035 |a (NLM)26761821 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kong, Yan  |e verfasserin  |4 aut 
245 1 0 |a Measuring and Predicting Visual Importance of Similar Objects 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.06.2017 
500 |a Date Revised 23.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Similar objects are ubiquitous and abundant in both natural and artificial scenes. Determining the visual importance of several similar objects in a complex photograph is a challenge for image understanding algorithms. This study aims to define the importance of similar objects in an image and to develop a method that can select the most important instances for an input image from multiple similar objects. This task is challenging because multiple objects must be compared without adequate semantic information. This challenge is addressed by building an image database and designing an interactive system to measure object importance from human observers. This ground truth is used to define a range of features related to the visual importance of similar objects. Then, these features are used in learning-to-rank and random forest to rank similar objects in an image. Importance predictions were validated on 5,922 objects. The most important objects can be identified automatically. The factors related to composition (e.g., size, location, and overlap) are particularly informative, although clarity and color contrast are also important. We demonstrate the usefulness of similar object importance on various applications, including image retargeting, image compression, image re-attentionizing, image admixture, and manipulation of blindness images 
650 4 |a Journal Article 
700 1 |a Dong, Weiming  |e verfasserin  |4 aut 
700 1 |a Mei, Xing  |e verfasserin  |4 aut 
700 1 |a Ma, Chongyang  |e verfasserin  |4 aut 
700 1 |a Lee, Tong-Yee  |e verfasserin  |4 aut 
700 1 |a Lyu, Siwei  |e verfasserin  |4 aut 
700 1 |a Huang, Feiyue  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 22(2016), 12 vom: 10. Dez., Seite 2564-2578  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:12  |g day:10  |g month:12  |g pages:2564-2578 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2016.2515614  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 12  |b 10  |c 12  |h 2564-2578