Robust Regression

Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A maj...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 2 vom: 21. Feb., Seite 363-75
1. Verfasser: Huang, Dong (VerfasserIn)
Weitere Verfasser: Cabral, Ricardo, De la Torre, Fernando
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25640450X
003 DE-627
005 20231224180551.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2448091  |2 doi 
028 5 2 |a pubmed24n0854.xml 
035 |a (DE-627)NLM25640450X 
035 |a (NLM)26761740 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Dong  |e verfasserin  |4 aut 
245 1 0 |a Robust Regression 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.05.2016 
500 |a Date Revised 14.01.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion, specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present. Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision. This paper develops the theory of robust regression (RR) and presents an effective convex approach that uses recent advances on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to head pose estimation from images, image and video classification and facial attribute classification with missing data are used to illustrate the benefits of RR 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cabral, Ricardo  |e verfasserin  |4 aut 
700 1 |a De la Torre, Fernando  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 2 vom: 21. Feb., Seite 363-75  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:2  |g day:21  |g month:02  |g pages:363-75 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2448091  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 2  |b 21  |c 02  |h 363-75