|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM256404445 |
003 |
DE-627 |
005 |
20231224180551.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2015.2414429
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0854.xml
|
035 |
|
|
|a (DE-627)NLM256404445
|
035 |
|
|
|a (NLM)26761734
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhou, Feng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Generalized Canonical Time Warping
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.10.2016
|
500 |
|
|
|a Date Revised 30.12.2016
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Temporal alignment of human motion has been of recent interest due to its applications in animation, tele-rehabilitation and activity recognition. This paper presents generalized canonical time warping (GCTW), an extension of dynamic time warping (DTW) and canonical correlation analysis (CCA) for temporally aligning multi-modal sequences from multiple subjects performing similar activities. GCTW extends previous work on DTW and CCA in several ways: (1) it combines CCA with DTW to align multi-modal data (e.g., video and motion capture data); (2) it extends DTW by using a linear combination of monotonic functions to represent the warping path, providing a more flexible temporal warp. Unlike exact DTW, which has quadratic complexity, we propose a linear time algorithm to minimize GCTW. (3) GCTW allows simultaneous alignment of multiple sequences. Experimental results on aligning multi-modal data, facial expressions, motion capture data and video illustrate the benefits of GCTW. The code is available at http://humansensing.cs.cmu.edu/ctw
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a De la Torre, Fernando
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 38(2016), 2 vom: 21. Feb., Seite 279-94
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2016
|g number:2
|g day:21
|g month:02
|g pages:279-94
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2015.2414429
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2016
|e 2
|b 21
|c 02
|h 279-94
|