Flexible Clustered Multi-Task Learning by Learning Representative Tasks

Multi-task learning (MTL) methods have shown promising performance by learning multiple relevant tasks simultaneously, which exploits to share useful information across relevant tasks. Among various MTL methods, clustered multi-task learning (CMTL) assumes that all tasks can be clustered into groups...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 2 vom: 21. Feb., Seite 266-78
1. Verfasser: Zhou, Qiang (VerfasserIn)
Weitere Verfasser: Zhao, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM256404437
003 DE-627
005 20250219135517.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2452911  |2 doi 
028 5 2 |a pubmed25n0854.xml 
035 |a (DE-627)NLM256404437 
035 |a (NLM)26761733 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Qiang  |e verfasserin  |4 aut 
245 1 0 |a Flexible Clustered Multi-Task Learning by Learning Representative Tasks 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.05.2016 
500 |a Date Revised 14.01.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-task learning (MTL) methods have shown promising performance by learning multiple relevant tasks simultaneously, which exploits to share useful information across relevant tasks. Among various MTL methods, clustered multi-task learning (CMTL) assumes that all tasks can be clustered into groups and attempts to learn the underlying cluster structure from the training data. In this paper, we present a new approach for CMTL, called flexible clustered multi-task (FCMTL), in which the cluster structure is learned by identifying representative tasks. The new approach allows an arbitrary task to be described by multiple representative tasks, effectively soft-assigning a task to multiple clusters with different weights. Unlike existing counterpart, the proposed approach is more flexible in that (a) it does not require clusters to be disjoint, (b) tasks within one particular cluster do not have to share information to the same extent, and (c) the number of clusters is automatically inferred from data. Computationally, the proposed approach is formulated as a row-sparsity pursuit problem. We validate the proposed FCMTL on both synthetic and real-world data sets, and empirical results demonstrate that it outperforms many existing MTL methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhao, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 2 vom: 21. Feb., Seite 266-78  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:38  |g year:2016  |g number:2  |g day:21  |g month:02  |g pages:266-78 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2452911  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 2  |b 21  |c 02  |h 266-78