Fast Direct Methods for Gaussian Processes

A number of problems in probability and statistics can be addressed using the multivariate normal (Gaussian) distribution. In the one-dimensional case, computing the probability for a given mean and variance simply requires the evaluation of the corresponding Gaussian density. In the n-dimensional s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 2 vom: 21. Feb., Seite 252-65
1. Verfasser: Ambikasaran, Sivaram (VerfasserIn)
Weitere Verfasser: Foreman-Mackey, Daniel, Greengard, Leslie, Hogg, David W, O'Neil, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM256404429
003 DE-627
005 20231224180551.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2448083  |2 doi 
028 5 2 |a pubmed24n0854.xml 
035 |a (DE-627)NLM256404429 
035 |a (NLM)26761732 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ambikasaran, Sivaram  |e verfasserin  |4 aut 
245 1 0 |a Fast Direct Methods for Gaussian Processes 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.05.2016 
500 |a Date Revised 14.01.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A number of problems in probability and statistics can be addressed using the multivariate normal (Gaussian) distribution. In the one-dimensional case, computing the probability for a given mean and variance simply requires the evaluation of the corresponding Gaussian density. In the n-dimensional setting, however, it requires the inversion of an n ×n covariance matrix, C, as well as the evaluation of its determinant, det(C). In many cases, such as regression using Gaussian processes, the covariance matrix is of the form C = σ(2) I + K, where K is computed using a specified covariance kernel which depends on the data and additional parameters (hyperparameters). The matrix C is typically dense, causing standard direct methods for inversion and determinant evaluation to require O(n(3)) work. This cost is prohibitive for large-scale modeling. Here, we show that for the most commonly used covariance functions, the matrix C can be hierarchically factored into a product of block low-rank updates of the identity matrix, yielding an O (n log(2) n) algorithm for inversion. More importantly, we show that this factorization enables the evaluation of the determinant det(C), permitting the direct calculation of probabilities in high dimensions under fairly broad assumptions on the kernel defining K. Our fast algorithm brings many problems in marginalization and the adaptation of hyperparameters within practical reach using a single CPU core. The combination of nearly optimal scaling in terms of problem size with high-performance computing resources will permit the modeling of previously intractable problems. We illustrate the performance of the scheme on standard covariance kernels 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Foreman-Mackey, Daniel  |e verfasserin  |4 aut 
700 1 |a Greengard, Leslie  |e verfasserin  |4 aut 
700 1 |a Hogg, David W  |e verfasserin  |4 aut 
700 1 |a O'Neil, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 2 vom: 21. Feb., Seite 252-65  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:2  |g day:21  |g month:02  |g pages:252-65 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2448083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 2  |b 21  |c 02  |h 252-65