Depth Estimation with Occlusion Modeling Using Light-Field Cameras

Light-field cameras have become widely available in both consumer and industrial applications. However, most previous approaches do not model occlusions explicitly, and therefore fail to capture sharp object boundaries. A common assumption is that for a Lambertian scene, a pixel will exhibit photo-c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 11 vom: 10. Nov., Seite 2170-2181
1. Verfasser: Wang, Ting-Chun (VerfasserIn)
Weitere Verfasser: Efros, Alexei A, Ramamoorthi, Ravi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM25640030X
003 DE-627
005 20231224180546.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0854.xml 
035 |a (DE-627)NLM25640030X 
035 |a (NLM)26761194 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Ting-Chun  |e verfasserin  |4 aut 
245 1 0 |a Depth Estimation with Occlusion Modeling Using Light-Field Cameras 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2017 
500 |a Date Revised 06.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Light-field cameras have become widely available in both consumer and industrial applications. However, most previous approaches do not model occlusions explicitly, and therefore fail to capture sharp object boundaries. A common assumption is that for a Lambertian scene, a pixel will exhibit photo-consistency, which means all viewpoints converge to a single point when focused to its depth. However, in the presence of occlusions this assumption fails to hold, making most current approaches unreliable precisely where accurate depth information is most important - at depth discontinuities. In this paper, an occlusion-aware depth estimation algorithm is developed; the method also enables identification of occlusion edges, which may be useful in other applications. It can be shown that although photo-consistency is not preserved for pixels at occlusions, it still holds in approximately half the viewpoints. Moreover, the line separating the two view regions (occluded object versus occluder) has the same orientation as that of the occlusion edge in the spatial domain. By ensuring photo-consistency in only the occluded view region, depth estimation can be improved. Occlusion predictions can also be computed and used for regularization. Experimental results show that our method outperforms current state-of-the-art light-field depth estimation algorithms, especially near occlusion boundaries 
650 4 |a Journal Article 
700 1 |a Efros, Alexei A  |e verfasserin  |4 aut 
700 1 |a Ramamoorthi, Ravi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 11 vom: 10. Nov., Seite 2170-2181  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:11  |g day:10  |g month:11  |g pages:2170-2181 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 11  |b 10  |c 11  |h 2170-2181