|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM256395217 |
003 |
DE-627 |
005 |
20231224180539.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.5b03689
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0854.xml
|
035 |
|
|
|a (DE-627)NLM256395217
|
035 |
|
|
|a (NLM)26760445
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sambasivam, Abhinanden
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Self-Assembly of Nanoparticle-Surfactant Complexes with Rodlike Micelles
|b A Molecular Dynamics Study
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.06.2016
|
500 |
|
|
|a Date Revised 09.02.2016
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The self-assembly of nanoparticles (NPs) with cationic micelles of cetyltrimethylammonium chloride (CTAC) is known to produce stable nanogels with rich rheological and optical properties. Coarse-grained molecular dynamics (MD) simulations are performed to explore the molecular mechanisms underlying this self-assembly process. In an aqueous solution of CTAC surfactants, a negatively charged NP with a zeta potential of less than -45 mV is observed to form a stable vesicular structure in which the particle surface is almost entirely covered with a double layer of surfactants. In comparison, surfactants form a monolayer, or a corona, around an uncharged hydrophobic NP with the tailgroups physically adsorbed onto the particle. In the presence of sodium salicylate salt, such NP-surfactant complexes (NPSCs) interact with rodlike CTAC micelles, resulting in the formation of stable junctions through the opening up of the micelle end-cap followed by surfactant exchange, which is diffusion-limited. The diffusive regime spans several hundred nanoseconds, thereby necessitating MD simulations over microsecond time scales. The energetics of NPSC-micelle complexation is analyzed from the variation in the total pair-potential energy of the structures
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Sangwai, Ashish V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sureshkumar, Radhakrishna
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 32(2016), 5 vom: 09. Feb., Seite 1214-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2016
|g number:5
|g day:09
|g month:02
|g pages:1214-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.5b03689
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2016
|e 5
|b 09
|c 02
|h 1214-9
|