Motion Estimation Based on Mutual Information and Adaptive Multi-Scale Thresholding

This paper proposes a new method of calculating a matching metric for motion estimation. The proposed method splits the information in the source images into multiple scale and orientation subbands, reduces the subband values to a binary representation via an adaptive thresholding algorithm, and use...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 3 vom: 11. März, Seite 1095-108
1. Verfasser: Xu, Rui (VerfasserIn)
Weitere Verfasser: Taubman, David, Naman, Aous Thabit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper proposes a new method of calculating a matching metric for motion estimation. The proposed method splits the information in the source images into multiple scale and orientation subbands, reduces the subband values to a binary representation via an adaptive thresholding algorithm, and uses mutual information to model the similarity of corresponding square windows in each image. A moving window strategy is applied to recover a dense estimated motion field whose properties are explored. The proposed matching metric is a sum of mutual information scores across space, scale, and orientation. This facilitates the exploitation of information diversity in the source images. Experimental comparisons are performed amongst several related approaches, revealing that the proposed matching metric is better able to exploit information diversity, generating more accurate motion fields
Beschreibung:Date Completed 01.07.2016
Date Revised 19.01.2016
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2016.2514488