Niosomes as Drug Nanovectors : Multiscale pH-Dependent Structural Response

The use of nanocarriers, which respond to different stimuli controlling their physicochemical properties and biological responsivness, shows a growing interest in pharmaceutical science. The stimuli are activated by targeting tissues and biological compartments, e.g., pH modification, temperature, r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 5 vom: 09. Feb., Seite 1241-9
1. Verfasser: Marianecci, Carlotta (VerfasserIn)
Weitere Verfasser: Di Marzio, Luisa, Del Favero, Elena, Cantù, Laura, Brocca, Paola, Rondelli, Valeria, Rinaldi, Federica, Dini, Luciana, Serra, Antonio, Decuzzi, Paolo, Celia, Christian, Paolino, Donatella, Fresta, Massimo, Carafa, Maria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers Liposomes Polysorbates Cholesterol 97C5T2UQ7J
LEADER 01000naa a22002652 4500
001 NLM256222096
003 DE-627
005 20231224180152.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5b04111  |2 doi 
028 5 2 |a pubmed24n0854.xml 
035 |a (DE-627)NLM256222096 
035 |a (NLM)26740247 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marianecci, Carlotta  |e verfasserin  |4 aut 
245 1 0 |a Niosomes as Drug Nanovectors  |b Multiscale pH-Dependent Structural Response 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.02.2017 
500 |a Date Revised 14.02.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The use of nanocarriers, which respond to different stimuli controlling their physicochemical properties and biological responsivness, shows a growing interest in pharmaceutical science. The stimuli are activated by targeting tissues and biological compartments, e.g., pH modification, temperature, redox condition, enzymatic activity, or can be physically applied, e.g., a magnetic field and ultrasound. pH modification represents the easiest method of passive targeting, which is actually used to accumulate nanocarriers in cells and tissues. The aim of this paper was to physicochemically characterize pH-sensitive niosomes using different experimental conditions and demonstrate the effect of surfactant composition on the supramolecular structure of niosomes. In this attempt, niosomes, made from commercial (Tween21) and synthetic surfactants (Tween20 derivatives), were physicochemically characterized by using different techniques, e.g., transmission electron microscopy, Raman spectroscopy, and small-angle X-ray scattering. The changes of niosome structure at different pHs depend on surfactants, which can affect the supramolecular structure of colloidal nanocarriers and their potential use both in vitro and in vivo. At pH 7.4, the shape and structure of niosomes have been maintained; however, niosomes show some differences in terms of bilayer thicknesses, water penetration, membrane coupling, and cholesterol dispersion. The acid pH (5.5) can increase the bilayer fluidity, and affect the cholesterol depletion. In fact, Tween21 niosomes form large vesicles with lower curvature radius at acid pH; while Tween20-derivative niosomes increase the intrachain mobility within a more interchain correlated membrane. These results demonstrate that the use of multiple physicochemical procedures provides more information about supramolecular structures of niosomes and improves the opportunity to deeply investigate the effect of stimuli responsiveness on the niosome structure 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Lipid Bilayers  |2 NLM 
650 7 |a Liposomes  |2 NLM 
650 7 |a Polysorbates  |2 NLM 
650 7 |a Cholesterol  |2 NLM 
650 7 |a 97C5T2UQ7J  |2 NLM 
700 1 |a Di Marzio, Luisa  |e verfasserin  |4 aut 
700 1 |a Del Favero, Elena  |e verfasserin  |4 aut 
700 1 |a Cantù, Laura  |e verfasserin  |4 aut 
700 1 |a Brocca, Paola  |e verfasserin  |4 aut 
700 1 |a Rondelli, Valeria  |e verfasserin  |4 aut 
700 1 |a Rinaldi, Federica  |e verfasserin  |4 aut 
700 1 |a Dini, Luciana  |e verfasserin  |4 aut 
700 1 |a Serra, Antonio  |e verfasserin  |4 aut 
700 1 |a Decuzzi, Paolo  |e verfasserin  |4 aut 
700 1 |a Celia, Christian  |e verfasserin  |4 aut 
700 1 |a Paolino, Donatella  |e verfasserin  |4 aut 
700 1 |a Fresta, Massimo  |e verfasserin  |4 aut 
700 1 |a Carafa, Maria  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 32(2016), 5 vom: 09. Feb., Seite 1241-9  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:32  |g year:2016  |g number:5  |g day:09  |g month:02  |g pages:1241-9 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5b04111  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 32  |j 2016  |e 5  |b 09  |c 02  |h 1241-9