Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution

Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 2 vom: 19. Jan., Seite 428-41
1. Verfasser: Li, Zifeng (VerfasserIn)
Weitere Verfasser: Van Dyk, Antony K, Fitzwater, Susan J, Fichthorn, Kristen A, Milner, Scott T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM256175519
003 DE-627
005 20231224180048.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5b03942  |2 doi 
028 5 2 |a pubmed24n0853.xml 
035 |a (DE-627)NLM256175519 
035 |a (NLM)26735020 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zifeng  |e verfasserin  |4 aut 
245 1 0 |a Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.05.2016 
500 |a Date Revised 19.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Van Dyk, Antony K  |e verfasserin  |4 aut 
700 1 |a Fitzwater, Susan J  |e verfasserin  |4 aut 
700 1 |a Fichthorn, Kristen A  |e verfasserin  |4 aut 
700 1 |a Milner, Scott T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 32(2016), 2 vom: 19. Jan., Seite 428-41  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:32  |g year:2016  |g number:2  |g day:19  |g month:01  |g pages:428-41 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5b03942  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 32  |j 2016  |e 2  |b 19  |c 01  |h 428-41