Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device

Characterization of the stiffness of multiple particles trapped by tweezers-based force spectroscopy is a key step in building simple, high-throughput, and robust systems that can investigate the molecular interactions in a biological process, but the technology to characterize it in a given environ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 3 vom: 26. Jan., Seite 922-7
1. Verfasser: Son, Myeonggu (VerfasserIn)
Weitere Verfasser: Choi, Seungyeop, Ko, Kwan Hwi, Kim, Min Hyung, Lee, Sei-Young, Key, Jaehong, Yoon, Young-Ro, Park, In Soo, Lee, Sang Woo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Polystyrenes Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:Characterization of the stiffness of multiple particles trapped by tweezers-based force spectroscopy is a key step in building simple, high-throughput, and robust systems that can investigate the molecular interactions in a biological process, but the technology to characterize it in a given environment simultaneously is still lacking. We first characterized the stiffness of multiple particles trapped by dielectrophoretic (DEP) tweezers inside a microfluidic device. In this characterization, we developed a method to measure the thermal fluctuations of the trapped multiple particles with DEP tweezers by varying the heights of the particles in the given environment at the same time. Using the data measured in this controlled environment, we extracted the stiffness of the trapped particles and calculated their force. This study not only provides a simple and high-throughput method to measure the trap stiffness of multiple particles inside a microfluidic device using DEP tweezers but also inspires the application of the trapped multiple particles to investigate the dynamics in molecular interactions
Beschreibung:Date Completed 24.10.2016
Date Revised 30.12.2016
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b03677