Image Retargeting by Texture-Aware Synthesis

Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them. In this paper, we design a new framework based on exampled-based texture synthesis to enhance content-aware image retargeting. By detecting the textural regions in an image, th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 22(2016), 2 vom: 19. Feb., Seite 1088-101
1. Verfasser: Dong, Weiming (VerfasserIn)
Weitere Verfasser: Wu, Fuzhang, Kong, Yan, Mei, Xing, Lee, Tong-Yee, Zhang, Xiaopeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM256141037
003 DE-627
005 20231224180004.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2440255  |2 doi 
028 5 2 |a pubmed24n0853.xml 
035 |a (DE-627)NLM256141037 
035 |a (NLM)26731453 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Weiming  |e verfasserin  |4 aut 
245 1 0 |a Image Retargeting by Texture-Aware Synthesis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.04.2016 
500 |a Date Revised 06.01.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them. In this paper, we design a new framework based on exampled-based texture synthesis to enhance content-aware image retargeting. By detecting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped. This method enables the manipulation of textural & non-textural regions with different strategies since they have different natures. We propose to retarget the textural regions by example-based synthesis and non-textural regions by fast multi-operator. To achieve practical retargeting applications for general images, we develop an automatic and fast texture detection method that can detect multiple disjoint textural regions. We adjust the saliency of the image according to the features of the textural regions. To validate the proposed method, comparisons with state-of-the-art image retargeting techniques and a user study were conducted. Convincing visual results are shown to demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Fuzhang  |e verfasserin  |4 aut 
700 1 |a Kong, Yan  |e verfasserin  |4 aut 
700 1 |a Mei, Xing  |e verfasserin  |4 aut 
700 1 |a Lee, Tong-Yee  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 22(2016), 2 vom: 19. Feb., Seite 1088-101  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:2  |g day:19  |g month:02  |g pages:1088-101 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2440255  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 2  |b 19  |c 02  |h 1088-101