Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model

This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. In initialization stage, we propose a group sparse opti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 11 vom: 05. Nov., Seite 2212-2226
1. Verfasser: Yu, Xiang (VerfasserIn)
Weitere Verfasser: Huang, Junzhou, Zhang, Shaoting, Metaxas, Dimitris N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM255872348
003 DE-627
005 20250219121414.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0852.xml 
035 |a (DE-627)NLM255872348 
035 |a (NLM)26700972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Xiang  |e verfasserin  |4 aut 
245 1 0 |a Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2017 
500 |a Date Revised 06.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. In initialization stage, we propose a group sparse optimized mixture model to automatically select the most salient facial landmarks. By introducing 3D face shape model, we apply procrustes analysis to provide pose-aware landmark initialization. In landmark localization stage, the first step uses mean-shift local search with constrained local model to rapidly approach the global optimum. The second step uses component-wise active contours to discriminatively refine the subtle shape variation. Our framework simultaneously handles face detection, pose-robust landmark localization and tracking in real time. Extensive experiments are conducted on both laboratory environmental databases and face-in-the-wild databases. The results reveal that our approach consistently outperforms state-of-the-art methods for face alignment and tracking 
650 4 |a Journal Article 
700 1 |a Huang, Junzhou  |e verfasserin  |4 aut 
700 1 |a Zhang, Shaoting  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 11 vom: 05. Nov., Seite 2212-2226  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:11  |g day:05  |g month:11  |g pages:2212-2226 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 11  |b 05  |c 11  |h 2212-2226