|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM255872348 |
003 |
DE-627 |
005 |
20250219121414.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0852.xml
|
035 |
|
|
|a (DE-627)NLM255872348
|
035 |
|
|
|a (NLM)26700972
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yu, Xiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.06.2017
|
500 |
|
|
|a Date Revised 06.06.2017
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. In initialization stage, we propose a group sparse optimized mixture model to automatically select the most salient facial landmarks. By introducing 3D face shape model, we apply procrustes analysis to provide pose-aware landmark initialization. In landmark localization stage, the first step uses mean-shift local search with constrained local model to rapidly approach the global optimum. The second step uses component-wise active contours to discriminatively refine the subtle shape variation. Our framework simultaneously handles face detection, pose-robust landmark localization and tracking in real time. Extensive experiments are conducted on both laboratory environmental databases and face-in-the-wild databases. The results reveal that our approach consistently outperforms state-of-the-art methods for face alignment and tracking
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Huang, Junzhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shaoting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Metaxas, Dimitris N
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 38(2016), 11 vom: 05. Nov., Seite 2212-2226
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2016
|g number:11
|g day:05
|g month:11
|g pages:2212-2226
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2016
|e 11
|b 05
|c 11
|h 2212-2226
|