PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress

Copyright © 2015 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 191(2016) vom: 01. Feb., Seite 1-11
1. Verfasser: Nath, Manoj (VerfasserIn)
Weitere Verfasser: Yadav, Sandep, Kumar Sahoo, Ranjan, Passricha, Nishat, Tuteja, Renu, Tuteja, Narendra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Calcium (Ca(2+)) homeostasis Cell viability Pea DNA helicase 45 (PDH45) ROS Salinity stress Sodium (Na(+)) accumulation Plant Proteins Reactive Oxygen Species mehr... Sodium 9NEZ333N27 Calcium SY7Q814VUP
LEADER 01000naa a22002652 4500
001 NLM255741456
003 DE-627
005 20231224175134.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2015.11.008  |2 doi 
028 5 2 |a pubmed24n0852.xml 
035 |a (DE-627)NLM255741456 
035 |a (NLM)26687010 
035 |a (PII)S0176-1617(15)00263-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nath, Manoj  |e verfasserin  |4 aut 
245 1 0 |a PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.12.2016 
500 |a Date Revised 31.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2015 Elsevier GmbH. All rights reserved. 
520 |a Salinity severely affects the growth/productivity of rice, which is utilized as major staple food crop worldwide. PDH45 (pea DNA helicase 45), a member of the DEAD-box helicase family, actively provides salinity stress tolerance, but the mechanism behind this is not well known. Therefore, in order to understand the mechanism of stress tolerance, sodium ion (Na(+)), reactive oxygen species (ROS), cytosolic calcium [Ca(2+)]cyt and cell viability were analyzed in roots of PDH45 transgenic-IR64 rice lines along with wild-type (WT) IR64 rice under salinity stress (100mM and 200 mM NaCl). In addition, the roots of salinity-tolerant (FL478) and susceptible (Pusa-44) rice varieties were also analyzed under salinity stress for comparative analysis. The results reveal that, under salinity stress (100mM and 200 mM NaCl), roots of PDH45 transgenic lines accumulate lower levels of Na(+), ROS and maintain [Ca(2+)]cyt and exhibit higher cell viability as compared with roots of WT (IR64) plants. Similar results were also obtained in the salinity-tolerant FL478 rice. However, the roots of WT and salinity-susceptible Pusa-44 rice accumulated higher levels of Na(+), ROS and [Ca(2+)]cyt imbalance and lower cell viability during salinity stress, which is in contrast to the overexpressing PDH45 transgenic lines and salinity-tolerant FL478 rice. Further, to understand the mechanism of PDH45 at molecular level, comparative expression profiling of 12 cation transporters/genes was also conducted in roots of WT (IR64) and overexpressing PDH45 transgenic lines (L1 and L2) under salt stress (24h of 200 mM NaCl). The expression analysis results show altered and differential gene expression of cation transporters/genes in salt-stressed roots of WT (IR64) and overexpressing transgenic lines (L1 and L2). These observations collectively suggest that, under salinity stress conditions, PDH45 is involved in the regulation of Na(+) level, ROS production, [Ca(2+)]cyt homeostasis, cell viability and cation transporters in roots of PDH45 transgenic-IR64 rice and consequently provide salinity tolerance. Elucidating the detailed regulatory mechanism of PDH45 will provide a better understanding of salinity stress tolerance and further open new ways to manipulate genome to achieve higher agricultural production under stress 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Calcium (Ca(2+)) homeostasis 
650 4 |a Cell viability 
650 4 |a Pea DNA helicase 45 (PDH45) 
650 4 |a ROS 
650 4 |a Salinity stress 
650 4 |a Sodium (Na(+)) accumulation 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Sodium  |2 NLM 
650 7 |a 9NEZ333N27  |2 NLM 
650 7 |a Calcium  |2 NLM 
650 7 |a SY7Q814VUP  |2 NLM 
700 1 |a Yadav, Sandep  |e verfasserin  |4 aut 
700 1 |a Kumar Sahoo, Ranjan  |e verfasserin  |4 aut 
700 1 |a Passricha, Nishat  |e verfasserin  |4 aut 
700 1 |a Tuteja, Renu  |e verfasserin  |4 aut 
700 1 |a Tuteja, Narendra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 191(2016) vom: 01. Feb., Seite 1-11  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:191  |g year:2016  |g day:01  |g month:02  |g pages:1-11 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2015.11.008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 191  |j 2016  |b 01  |c 02  |h 1-11