Fused One-vs-All Features With Semantic Alignments for Fine-Grained Visual Categorization

Fine-grained visual categorization is an emerging research area and has been attracting growing attention recently. Due to the large inter-class similarity and intra-class variance, it is extremely challenging to recognize objects in fine-grained domains. A traditional spatial pyramid matching model...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 2 vom: 18. Feb., Seite 878-92
1. Verfasser: Zhang, Xiaopeng (VerfasserIn)
Weitere Verfasser: Xiong, Hongkai, Zhou, Wengang, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM255724799
003 DE-627
005 20250219114618.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2509425  |2 doi 
028 5 2 |a pubmed25n0852.xml 
035 |a (DE-627)NLM255724799 
035 |a (NLM)26685247 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
245 1 0 |a Fused One-vs-All Features With Semantic Alignments for Fine-Grained Visual Categorization 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 19.05.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fine-grained visual categorization is an emerging research area and has been attracting growing attention recently. Due to the large inter-class similarity and intra-class variance, it is extremely challenging to recognize objects in fine-grained domains. A traditional spatial pyramid matching model could obtain desirable results for the basic-level category classification by weak alignment, but may easily fail in fine-grained domains, since the discriminative features are extremely localized. This paper proposes a new framework for fine-grained visual categorization. First, an efficient part localization method incorporates semantic prior into geometric alignment. It detects the less deformable parts, such as the head of birds with a template-based model, and localizes other highly deformable parts with simple geometric alignment. Second, we learn one-vs-all features, which are simple and transplantable. The learned mid-level features are dimension friendly and more robust to outlier instances. Furthermore, in view that some subcategories are too similar to tell them apart easily, we fuse the subcategories iteratively according to their similarities, and learn fused one-vs-all features. Experimental results show the superior performance of our algorithms over the existing methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Xiong, Hongkai  |e verfasserin  |4 aut 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 2 vom: 18. Feb., Seite 878-92  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:25  |g year:2016  |g number:2  |g day:18  |g month:02  |g pages:878-92 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2509425  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 2  |b 18  |c 02  |h 878-92