Sparse Hashing Tracking

In this paper, we propose a novel tracking framework based on a sparse and discriminative hashing method. Different from the previous work, we treat object tracking as an approximate nearest neighbor searching process in a binary space. Using the hash functions, the target templates and the candidat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 2 vom: 18. Feb., Seite 840-9
1. Verfasser: Zhang, Lihe (VerfasserIn)
Weitere Verfasser: Lu, Huchuan, Du, Dandan, Liu, Luning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25572473X
003 DE-627
005 20231224175113.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2509244  |2 doi 
028 5 2 |a pubmed24n0852.xml 
035 |a (DE-627)NLM25572473X 
035 |a (NLM)26685241 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lihe  |e verfasserin  |4 aut 
245 1 0 |a Sparse Hashing Tracking 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 19.05.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel tracking framework based on a sparse and discriminative hashing method. Different from the previous work, we treat object tracking as an approximate nearest neighbor searching process in a binary space. Using the hash functions, the target templates and the candidates can be projected into the Hamming space, facilitating the distance calculation and tracking efficiency. First, we integrate both the inter-class and intra-class information to train multiple hash functions for better classification, while most classifiers in previous tracking methods usually neglect the inter-class correlation, which may cause the inaccuracy. Then, we introduce sparsity into the hash coefficient vectors for dynamic feature selection, which is crucial to select the discriminative and stable features to adapt to visual variations during the tracking process. Extensive experiments on various challenging sequences show that the proposed algorithm performs favorably against the state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
700 1 |a Du, Dandan  |e verfasserin  |4 aut 
700 1 |a Liu, Luning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 2 vom: 18. Feb., Seite 840-9  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:2  |g day:18  |g month:02  |g pages:840-9 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2509244  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 2  |b 18  |c 02  |h 840-9