EffectorP : predicting fungal effector proteins from secretomes using machine learning

© 2015 CSIRO New Phytologist © 2015 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1990. - 210(2016), 2 vom: 18. Apr., Seite 743-61
1. Verfasser: Sperschneider, Jana (VerfasserIn)
Weitere Verfasser: Gardiner, Donald M, Dodds, Peter N, Tini, Francesco, Covarelli, Lorenzo, Singh, Karam B, Manners, John M, Taylor, Jennifer M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't EffectorP effector fungal effector prediction fungal pathogen machine learning secretomes Amino Acids Fungal Proteins
LEADER 01000caa a22002652 4500
001 NLM255683987
003 DE-627
005 20250219113818.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.13794  |2 doi 
028 5 2 |a pubmed25n0852.xml 
035 |a (DE-627)NLM255683987 
035 |a (NLM)26680733 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sperschneider, Jana  |e verfasserin  |4 aut 
245 1 0 |a EffectorP  |b predicting fungal effector proteins from secretomes using machine learning 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.12.2016 
500 |a Date Revised 08.04.2022 
500 |a published: Print-Electronic 
500 |a GENBANK: AY631958.2 
500 |a Citation Status MEDLINE 
520 |a © 2015 CSIRO New Phytologist © 2015 New Phytologist Trust. 
520 |a Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a EffectorP 
650 4 |a effector 
650 4 |a fungal effector prediction 
650 4 |a fungal pathogen 
650 4 |a machine learning 
650 4 |a secretomes 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Fungal Proteins  |2 NLM 
700 1 |a Gardiner, Donald M  |e verfasserin  |4 aut 
700 1 |a Dodds, Peter N  |e verfasserin  |4 aut 
700 1 |a Tini, Francesco  |e verfasserin  |4 aut 
700 1 |a Covarelli, Lorenzo  |e verfasserin  |4 aut 
700 1 |a Singh, Karam B  |e verfasserin  |4 aut 
700 1 |a Manners, John M  |e verfasserin  |4 aut 
700 1 |a Taylor, Jennifer M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1990  |g 210(2016), 2 vom: 18. Apr., Seite 743-61  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:210  |g year:2016  |g number:2  |g day:18  |g month:04  |g pages:743-61 
856 4 0 |u http://dx.doi.org/10.1111/nph.13794  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 210  |j 2016  |e 2  |b 18  |c 04  |h 743-61