Articulated and Generalized Gaussian Kernel Correlation for Human Pose Estimation

In this paper, we propose an articulated and generalized Gaussian kernel correlation (GKC)-based framework for human pose estimation. We first derive a unified GKC representation that generalizes the previous sum of Gaussians (SoG)-based methods for the similarity measure between a template and an o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 2 vom: 01. Feb., Seite 776-89
1. Verfasser: Ding, Meng (VerfasserIn)
Weitere Verfasser: Fan, Guoliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM255603185
003 DE-627
005 20231224174838.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2507445  |2 doi 
028 5 2 |a pubmed24n0852.xml 
035 |a (DE-627)NLM255603185 
035 |a (NLM)26672042 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Meng  |e verfasserin  |4 aut 
245 1 0 |a Articulated and Generalized Gaussian Kernel Correlation for Human Pose Estimation 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.10.2016 
500 |a Date Revised 30.12.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose an articulated and generalized Gaussian kernel correlation (GKC)-based framework for human pose estimation. We first derive a unified GKC representation that generalizes the previous sum of Gaussians (SoG)-based methods for the similarity measure between a template and an observation both of which are represented by various SoG variants. Then, we develop an articulated GKC (AGKC) by integrating a kinematic skeleton in a multivariate SoG template that supports subject-specific shape modeling and articulated pose estimation for both the full body and the hands. We further propose a sequential (body/hand) pose tracking algorithm by incorporating three regularization terms in the AGKC function, including visibility, intersection penalty, and pose continuity. Our tracking algorithm is simple yet effective and computationally efficient. We evaluate our algorithm on two benchmark depth data sets. The experimental results are promising and competitive when compared with the state-of-the-art algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Fan, Guoliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 2 vom: 01. Feb., Seite 776-89  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:2  |g day:01  |g month:02  |g pages:776-89 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2507445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 2  |b 01  |c 02  |h 776-89