Theoretical study of excited states of DNA base dimers and tetramers using optimally tuned range-separated density functional theory

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 37(2016), 7 vom: 15. März, Seite 684-93
1. Verfasser: Sun, Haitao (VerfasserIn)
Weitere Verfasser: Zhang, Shian, Zhong, Cheng, Sun, Zhenrong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DFT/TDDFT optimal tuning range-separated DNA 9007-49-2
Beschreibung
Zusammenfassung:© 2015 Wiley Periodicals, Inc.
Excited states of various DNA base dimers and tetramers including Watson-Crick H-bonding and stacking interactions have been investigated by time-dependent density functional theory using nonempirically tuned range-separated exchange (RSE) functionals. Significant improvements are found in the prediction of excitation energies and oscillator strengths, with results comparable to those of high-level coupled-cluster (CC) models (RI-CC2 and EOM-CCSD(T)). The optimally-tuned RSE functional significantly outperforms its non-tuned (default) version and widely-used B3LYP functional. Compared to those high-level CC benchmarks, the large mean absolute deviations of conventional functionals can be attributed to their inappropriate amount of exact exchange and large delocalization errors which can be greatly eliminated by tuning approach. Furthermore, the impacts of H-bonding and π-stacking interactions in various DNA dimers and tetramers are analyzed through peak shift of simulated absorption spectra as well as corresponding change of absorption intensity. The result indicates the stacking interaction in DNA tetramers mainly contributes to the hypochromicity effect. The present work provides an efficient theoretical tool for accurate prediction of optical properties and excited states of nucleobase and other biological systems. © 2015 Wiley Periodicals, Inc
Beschreibung:Date Completed 27.10.2016
Date Revised 30.12.2016
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.24266