Scalable Feature Matching by Dual Cascaded Scalar Quantization for Image Retrieval

In this paper, we investigate the problem of scalable visual feature matching in large-scale image search and propose a novel cascaded scalar quantization scheme in dual resolution. We formulate the visual feature matching as a range-based neighbor search problem and approach it by identifying hyper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 1 vom: 04. Jan., Seite 159-71
1. Verfasser: Zhou, Wengang (VerfasserIn)
Weitere Verfasser: Yang, Ming, Wang, Xiaoyu, Li, Houqiang, Lin, Yuanqing, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25546357X
003 DE-627
005 20231224174540.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2430329  |2 doi 
028 5 2 |a pubmed24n0851.xml 
035 |a (DE-627)NLM25546357X 
035 |a (NLM)26656584 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
245 1 0 |a Scalable Feature Matching by Dual Cascaded Scalar Quantization for Image Retrieval 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2016 
500 |a Date Revised 15.12.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we investigate the problem of scalable visual feature matching in large-scale image search and propose a novel cascaded scalar quantization scheme in dual resolution. We formulate the visual feature matching as a range-based neighbor search problem and approach it by identifying hyper-cubes with a dual-resolution scalar quantization strategy. Specifically, for each dimension of the PCA-transformed feature, scalar quantization is performed at both coarse and fine resolutions. The scalar quantization results at the coarse resolution are cascaded over multiple dimensions to index an image database. The scalar quantization results over multiple dimensions at the fine resolution are concatenated into a binary super-vector and stored into the index list for efficient verification. The proposed cascaded scalar quantization (CSQ) method is free of the costly visual codebook training and thus is independent of any image descriptor training set. The index structure of the CSQ is flexible enough to accommodate new image features and scalable to index large-scale image database. We evaluate our approach on the public benchmark datasets for large-scale image retrieval. Experimental results demonstrate the competitive retrieval performance of the proposed method compared with several recent retrieval algorithms on feature quantization 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Ming  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaoyu  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
700 1 |a Lin, Yuanqing  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 1 vom: 04. Jan., Seite 159-71  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:1  |g day:04  |g month:01  |g pages:159-71 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2430329  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 1  |b 04  |c 01  |h 159-71