Joint Multilabel Classification With Community-Aware Label Graph Learning

As an important and challenging problem in machine learning and computer vision, multilabel classification is typically implemented in a max-margin multilabel learning framework, where the inter-label separability is characterized by the sample-specific classification margins between labels. However...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 1 vom: 01. Jan., Seite 484-93
1. Verfasser: Xi Li (VerfasserIn)
Weitere Verfasser: Xueyi Zhao, Zhongfei Zhang, Fei Wu, Yueting Zhuang, Jingdong Wang, Xuelong Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM255176724
003 DE-627
005 20231224173942.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2503700  |2 doi 
028 5 2 |a pubmed24n0850.xml 
035 |a (DE-627)NLM255176724 
035 |a (NLM)26625416 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xi Li  |e verfasserin  |4 aut 
245 1 0 |a Joint Multilabel Classification With Community-Aware Label Graph Learning 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2016 
500 |a Date Revised 11.03.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As an important and challenging problem in machine learning and computer vision, multilabel classification is typically implemented in a max-margin multilabel learning framework, where the inter-label separability is characterized by the sample-specific classification margins between labels. However, the conventional multilabel classification approaches are usually incapable of effectively exploring the intrinsic inter-label correlations as well as jointly modeling the interactions between inter-label correlations and multilabel classification. To address this issue, we propose a multilabel classification framework based on a joint learning approach called label graph learning (LGL) driven weighted Support Vector Machine (SVM). In principle, the joint learning approach explicitly models the inter-label correlations by LGL, which is jointly optimized with multilabel classification in a unified learning scheme. As a result, the learned label correlation graph well fits the multilabel classification task while effectively reflecting the underlying topological structures among labels. Moreover, the inter-label interactions are also influenced by label-specific sample communities (each community for the samples sharing a common label). Namely, if two labels have similar label-specific sample communities, they are likely to be correlated. Based on this observation, LGL is further regularized by the label Hypergraph Laplacian. Experimental results have demonstrated the effectiveness of our approach over several benchmark data sets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Xueyi Zhao  |e verfasserin  |4 aut 
700 1 |a Zhongfei Zhang  |e verfasserin  |4 aut 
700 1 |a Fei Wu  |e verfasserin  |4 aut 
700 1 |a Yueting Zhuang  |e verfasserin  |4 aut 
700 1 |a Jingdong Wang  |e verfasserin  |4 aut 
700 1 |a Xuelong Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 1 vom: 01. Jan., Seite 484-93  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:1  |g day:01  |g month:01  |g pages:484-93 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2503700  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 1  |b 01  |c 01  |h 484-93