Sparsity-weighted outlier FLOODing (OFLOOD) method : Efficient rare event sampling method using sparsity of distribution

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 37(2016), 8 vom: 30. März, Seite 724-38
1. Verfasser: Harada, Ryuhei (VerfasserIn)
Weitere Verfasser: Nakamura, Tomotake, Shigeta, Yasuteru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't biologically rare event conformational sampling conformational transition enhanced conformational sampling method molecular dynamics simulation protein folding protein function Dipeptides mehr... Proteins alanylalanine 2867-20-1 Muramidase EC 3.2.1.17
LEADER 01000naa a22002652 4500
001 NLM255045425
003 DE-627
005 20231224173655.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24255  |2 doi 
028 5 2 |a pubmed24n0850.xml 
035 |a (DE-627)NLM255045425 
035 |a (NLM)26611770 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Harada, Ryuhei  |e verfasserin  |4 aut 
245 1 0 |a Sparsity-weighted outlier FLOODing (OFLOOD) method  |b Efficient rare event sampling method using sparsity of distribution 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2016 
500 |a Date Revised 30.12.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 Wiley Periodicals, Inc. 
520 |a As an extension of the Outlier FLOODing (OFLOOD) method [Harada et al., J. Comput. Chem. 2015, 36, 763], the sparsity of the outliers defined by a hierarchical clustering algorithm, FlexDice, was considered to achieve an efficient conformational search as sparsity-weighted "OFLOOD." In OFLOOD, FlexDice detects areas of sparse distribution as outliers. The outliers are regarded as candidates that have high potential to promote conformational transitions and are employed as initial structures for conformational resampling by restarting molecular dynamics simulations. When detecting outliers, FlexDice defines a rank in the hierarchy for each outlier, which relates to sparsity in the distribution. In this study, we define a lower rank (first ranked), a medium rank (second ranked), and the highest rank (third ranked) outliers, respectively. For instance, the first-ranked outliers are located in a given conformational space away from the clusters (highly sparse distribution), whereas those with the third-ranked outliers are nearby the clusters (a moderately sparse distribution). To achieve the conformational search efficiently, resampling from the outliers with a given rank is performed. As demonstrations, this method was applied to several model systems: Alanine dipeptide, Met-enkephalin, Trp-cage, T4 lysozyme, and glutamine binding protein. In each demonstration, the present method successfully reproduced transitions among metastable states. In particular, the first-ranked OFLOOD highly accelerated the exploration of conformational space by expanding the edges. In contrast, the third-ranked OFLOOD reproduced local transitions among neighboring metastable states intensively. For quantitatively evaluations of sampled snapshots, free energy calculations were performed with a combination of umbrella samplings, providing rigorous landscapes of the biomolecules 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a biologically rare event 
650 4 |a conformational sampling 
650 4 |a conformational transition 
650 4 |a enhanced conformational sampling method 
650 4 |a molecular dynamics simulation 
650 4 |a protein folding 
650 4 |a protein function 
650 7 |a Dipeptides  |2 NLM 
650 7 |a Proteins  |2 NLM 
650 7 |a alanylalanine  |2 NLM 
650 7 |a 2867-20-1  |2 NLM 
650 7 |a Muramidase  |2 NLM 
650 7 |a EC 3.2.1.17  |2 NLM 
700 1 |a Nakamura, Tomotake  |e verfasserin  |4 aut 
700 1 |a Shigeta, Yasuteru  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 37(2016), 8 vom: 30. März, Seite 724-38  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:37  |g year:2016  |g number:8  |g day:30  |g month:03  |g pages:724-38 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24255  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2016  |e 8  |b 30  |c 03  |h 724-38