Elemental balance of SRF production process : solid recovered fuel produced from municipal solid waste
© The Author(s) 2015.
Veröffentlicht in: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 34(2016), 1 vom: 14. Jan., Seite 38-46 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Solid recovered fuel elemental balance household energy waste municipal solid waste polluting and potentially toxic elements Solid Waste |
Zusammenfassung: | © The Author(s) 2015. In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively |
---|---|
Beschreibung: | Date Completed 15.09.2016 Date Revised 16.12.2015 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1096-3669 |
DOI: | 10.1177/0734242X15615697 |