A Completely Blind Video Integrity Oracle

Considerable progress has been made toward developing still picture perceptual quality analyzers that do not require any reference picture and that are not trained on human opinion scores of distorted images. However, there do not yet exist any such completely blind video quality assessment (VQA) mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 1 vom: 05. Jan., Seite 289-300
1. Verfasser: Mittal, Anish (VerfasserIn)
Weitere Verfasser: Saad, Michele A, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM25493157X
003 DE-627
005 20231224173429.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2502725  |2 doi 
028 5 2 |a pubmed24n0849.xml 
035 |a (DE-627)NLM25493157X 
035 |a (NLM)26599970 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mittal, Anish  |e verfasserin  |4 aut 
245 1 2 |a A Completely Blind Video Integrity Oracle 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2016 
500 |a Date Revised 11.03.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Considerable progress has been made toward developing still picture perceptual quality analyzers that do not require any reference picture and that are not trained on human opinion scores of distorted images. However, there do not yet exist any such completely blind video quality assessment (VQA) models. Here, we attempt to bridge this gap by developing a new VQA model called the video intrinsic integrity and distortion evaluation oracle (VIIDEO). The new model does not require the use of any additional information other than the video being quality evaluated. VIIDEO embodies models of intrinsic statistical regularities that are observed in natural vidoes, which are used to quantify disturbances introduced due to distortions. An algorithm derived from the VIIDEO model is thereby able to predict the quality of distorted videos without any external knowledge about the pristine source, anticipated distortions, or human judgments of video quality. Even with such a paucity of information, we are able to show that the VIIDEO algorithm performs much better than the legacy full reference quality measure MSE on the LIVE VQA database and delivers performance comparable with a leading human judgment trained blind VQA model. We believe that the VIIDEO algorithm is a significant step toward making real-time monitoring of completely blind video quality possible 
650 4 |a Journal Article 
700 1 |a Saad, Michele A  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 1 vom: 05. Jan., Seite 289-300  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:1  |g day:05  |g month:01  |g pages:289-300 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2502725  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 1  |b 05  |c 01  |h 289-300