Factorized Graph Matching

Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspond...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 9 vom: 01. Sept., Seite 1774-1789
1. Verfasser: Zhou, Feng (VerfasserIn)
Weitere Verfasser: de la Torre, Fernando
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM254892981
003 DE-627
005 20231224173340.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0849.xml 
035 |a (DE-627)NLM254892981 
035 |a (NLM)26595909 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Feng  |e verfasserin  |4 aut 
245 1 0 |a Factorized Graph Matching 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges. Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art algorithms for GM. The code is available at http://humansensing.cs.cmu.edu/fgm 
650 4 |a Journal Article 
700 1 |a de la Torre, Fernando  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 9 vom: 01. Sept., Seite 1774-1789  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:9  |g day:01  |g month:09  |g pages:1774-1789 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 9  |b 01  |c 09  |h 1774-1789