Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 289(2015) vom: 15. Mai, Seite 1-17
1. Verfasser: Flegga, Mark B (VerfasserIn)
Weitere Verfasser: Hellander, Stefan, Erban, Radek
Format: Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Multiscale simulation particle-based model reaction-diffusion
LEADER 01000caa a22002652c 4500
001 NLM254639623
003 DE-627
005 20250219084344.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0848.xml 
035 |a (DE-627)NLM254639623 
035 |a (NLM)26568640 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Flegga, Mark B  |e verfasserin  |4 aut 
245 1 0 |a Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 24.03.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: (i) Δt → 0 and h is fixed; (ii) Δt → 0 and h → 0 such that √Δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model 
650 4 |a Journal Article 
650 4 |a Multiscale simulation 
650 4 |a particle-based model 
650 4 |a reaction-diffusion 
700 1 |a Hellander, Stefan  |e verfasserin  |4 aut 
700 1 |a Erban, Radek  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 289(2015) vom: 15. Mai, Seite 1-17  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnas 
773 1 8 |g volume:289  |g year:2015  |g day:15  |g month:05  |g pages:1-17 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 289  |j 2015  |b 15  |c 05  |h 1-17