Atmospheric Ice Adhesion on Water-Repellent Coatings : Wetting and Surface Topology Effects

Recent studies have shown the potential of water-repellent surfaces such as superhydrophobic surfaces in delaying ice accretion and reducing ice adhesion. However, conflicting trends in superhydrophobic ice adhesion strength were reported by previous studies. Hence, this investigation was performed...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 48 vom: 08. Dez., Seite 13107-16
1. Verfasser: Yeong, Yong Han (VerfasserIn)
Weitere Verfasser: Milionis, Athanasios, Loth, Eric, Sokhey, Jack, Lambourne, Alexis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Recent studies have shown the potential of water-repellent surfaces such as superhydrophobic surfaces in delaying ice accretion and reducing ice adhesion. However, conflicting trends in superhydrophobic ice adhesion strength were reported by previous studies. Hence, this investigation was performed to study the ice adhesion strength of hydrophobic and superhydrophobic coatings under realistic atmospheric icing conditions, i.e., supercooled spray of 20 μm mean volume diameter (MVD) droplets in a freezing (-20 °C), thermally homogeneous environment. The ice was released in a tensile direction by underside air pressure in a Mode-1 ice fracture condition. Results showed a strong effect of water repellency (increased contact and receding angles) on ice adhesion strength for hydrophobic surfaces. However, the extreme water repellency of nanocomposite superhydrophobic surfaces did not provide further adhesion strength reductions. Rather, ice adhesion strength for superhydrophobic surfaces depended primarily on the surface topology spatial parameter of autocorrelation length (Sal), whereby surface features in close proximities associated with a higher capillary pressure were better able to resist droplet penetration. Effects from other surface height parameters (e.g., arithmetic mean roughness, kurtosis, and skewness) were secondary
Beschreibung:Date Completed 16.03.2016
Date Revised 08.12.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b02725