|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM254577008 |
003 |
DE-627 |
005 |
20250219083407.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.5b03243
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0848.xml
|
035 |
|
|
|a (DE-627)NLM254577008
|
035 |
|
|
|a (NLM)26562213
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yu, Yaming
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Controllable Nonspecific Protein Adsorption by Charged Hyperbranched Polyglycerol Thin Films
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.09.2016
|
500 |
|
|
|a Date Revised 16.11.2017
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Antifouling thin films derived from charged hyperbranched polyglycerol (hbPG) layers were fabricated and evaluated. The anionic hbPG (a-hbPG) monolayers and cationic hbPG/anionic hbPG (c/a-hbPG) bilayers were adsorbed on the underlying self-assembled monolayers (SAMs) of cysteamine and 3-mercaptopropionic acid (3-MPA) by electrostatic interaction, respectively, and their procession was monitored by surface plasmon resonance spectroscopy (SPR). The adsorption of bovine serum albumin (BSA) and fibrinogen on the premade a-hbPG and c/a-hbPG thin films was measured and the capability of these thin films to resist nonspecific protein adsorption was evaluated by SPR as well. It is observed that the c/a-hbPG bilayer films possessed good antifouling properties. With c/a-hbPG bilayers consisting of higher molecular weight a-hbPG, the adsorption of BSA and fibrinogen were as low as 0.015 ng/mm(-2) and 0.0076 ng/mm(-2), respectively, comparable to the traditionally ultralow antifouling surfaces (<0.05 ng/mm(-2) of nonspecific protein adsorption). This work proved that the charged hbPG thin films can strongly reduce the nonspecific protein adsorption and have the promise for the antifouling coatings with improved performance
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a polyglycerol
|2 NLM
|
650 |
|
7 |
|a 25618-55-7
|2 NLM
|
650 |
|
7 |
|a Serum Albumin, Bovine
|2 NLM
|
650 |
|
7 |
|a 27432CM55Q
|2 NLM
|
650 |
|
7 |
|a 3-Mercaptopropionic Acid
|2 NLM
|
650 |
|
7 |
|a B03TJ3QU9M
|2 NLM
|
650 |
|
7 |
|a Glycerol
|2 NLM
|
650 |
|
7 |
|a PDC6A3C0OX
|2 NLM
|
700 |
1 |
|
|a Frey, Holger
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1985
|g 31(2015), 48 vom: 08. Dez., Seite 13101-6
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2015
|g number:48
|g day:08
|g month:12
|g pages:13101-6
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.5b03243
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2015
|e 48
|b 08
|c 12
|h 13101-6
|