A Reconfigurable Tangram Model for Scene Representation and Categorization

This paper presents a hierarchical and compositional scene layout (i.e., spatial configuration) representation and a method of learning reconfigurable model for scene categorization. Three types of shape primitives (i.e., triangle, parallelogram, and trapezoid), called tans, are used to tile scene i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 1 vom: 12. Jan., Seite 150-66
1. Verfasser: Jun Zhu (VerfasserIn)
Weitere Verfasser: Tianfu Wu, Song-Chun Zhu, Xiaokang Yang, Wenjun Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM254569773
003 DE-627
005 20231224172644.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2498407  |2 doi 
028 5 2 |a pubmed24n0848.xml 
035 |a (DE-627)NLM254569773 
035 |a (NLM)26561434 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jun Zhu  |e verfasserin  |4 aut 
245 1 2 |a A Reconfigurable Tangram Model for Scene Representation and Categorization 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2016 
500 |a Date Revised 11.03.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a hierarchical and compositional scene layout (i.e., spatial configuration) representation and a method of learning reconfigurable model for scene categorization. Three types of shape primitives (i.e., triangle, parallelogram, and trapezoid), called tans, are used to tile scene image lattice in a hierarchical and compositional way, and a directed acyclic AND-OR graph (AOG) is proposed to organize the overcomplete dictionary of tan instances placed in image lattice, exploring a very large number of scene layouts. With certain off-the-shelf appearance features used for grounding terminal-nodes (i.e., tan instances) in the AOG, a scene layout is represented by the globally optimal parse tree learned via a dynamic programming algorithm from the AOG, which we call tangram model. Then, a scene category is represented by a mixture of tangram models discovered with an exemplar-based clustering method. On basis of the tangram model, we address scene categorization in two aspects: 1) building a tangram bank representation for linear classifiers, which utilizes a collection of tangram models learned from all categories and 2) building a tangram matching kernel for kernel-based classification, which accounts for all hidden spatial configurations in the AOG. In experiments, our methods are evaluated on three scene data sets for both the configuration-level and semantic-level scene categorization, and outperform the spatial pyramid model consistently 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tianfu Wu  |e verfasserin  |4 aut 
700 1 |a Song-Chun Zhu  |e verfasserin  |4 aut 
700 1 |a Xiaokang Yang  |e verfasserin  |4 aut 
700 1 |a Wenjun Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 1 vom: 12. Jan., Seite 150-66  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:1  |g day:12  |g month:01  |g pages:150-66 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2498407  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 1  |b 12  |c 01  |h 150-66