Local Feature Discriminant Projection

In this paper, we propose a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) for supervised dimensionality reduction of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. We make three...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 9 vom: 04. Sept., Seite 1908-14
1. Verfasser: Yu, Mengyang (VerfasserIn)
Weitere Verfasser: Shao, Ling, Zhen, Xiantong, He, Xiaofei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM254478581
003 DE-627
005 20231224172447.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2497686  |2 doi 
028 5 2 |a pubmed24n0848.xml 
035 |a (DE-627)NLM254478581 
035 |a (NLM)26552074 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Mengyang  |e verfasserin  |4 aut 
245 1 0 |a Local Feature Discriminant Projection 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2017 
500 |a Date Revised 06.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) for supervised dimensionality reduction of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. We make three novel contributions. First, the proposed LFDP is a general supervised subspace learning algorithm which provides an efficient way for dimensionality reduction of large-scale local feature descriptors. Second, we introduce the Differential Scatter Discriminant Criterion (DSDC) to the subspace learning of local feature descriptors which avoids the matrix singularity problem. Third, we propose a generalized orthogonalization method to impose on projections, leading to a more compact and less redundant subspace. Extensive experimental validation on three benchmark datasets including UIUC-Sports, Scene-15 and MIT Indoor demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification 
650 4 |a Journal Article 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
700 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
700 1 |a He, Xiaofei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 9 vom: 04. Sept., Seite 1908-14  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:9  |g day:04  |g month:09  |g pages:1908-14 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2497686  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 9  |b 04  |c 09  |h 1908-14