Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 28(2016), 1 vom: 06. Jan., Seite 40-9
1. Verfasser: Annabi, Nasim (VerfasserIn)
Weitere Verfasser: Shin, Su Ryon, Tamayol, Ali, Miscuglio, Mario, Bakooshli, Mohsen Afshar, Assmann, Alexander, Mostafalu, Pooria, Sun, Jeong-Yun, Mithieux, Suzanne, Cheung, Louis, Tang, Xiaowu Shirley, Weiss, Anthony S, Khademhosseini, Ali
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. cardiac tissue engineering elasticity graphene oxides hydrogels tropoelastins Hydrogels mehr... Oxides Tropoelastin Graphite 7782-42-5
Beschreibung
Zusammenfassung:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests
Beschreibung:Date Completed 12.10.2016
Date Revised 11.11.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201503255