Tasking on Natural Statistics of Infrared Images

Natural scene statistics (NSSs) provide powerful, perceptually relevant tools that have been successfully used for image quality analysis of visible light images. Since NSS capture statistical regularities that arise from the physical world, they are relevant to long wave infrared (LWIR) images, whi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 1 vom: 09. Jan., Seite 65-79
1. Verfasser: Goodall, Todd Richard (VerfasserIn)
Weitere Verfasser: Bovik, Alan Conrad, Paulter, Nicholas G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000naa a22002652 4500
001 NLM254367194
003 DE-627
005 20231224172222.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2496289  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254367194 
035 |a (NLM)26540687 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Goodall, Todd Richard  |e verfasserin  |4 aut 
245 1 0 |a Tasking on Natural Statistics of Infrared Images 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.09.2016 
500 |a Date Revised 25.11.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Natural scene statistics (NSSs) provide powerful, perceptually relevant tools that have been successfully used for image quality analysis of visible light images. Since NSS capture statistical regularities that arise from the physical world, they are relevant to long wave infrared (LWIR) images, which differ from visible light images mainly by the wavelengths captured at the imaging sensors. We show that NSS models of bandpass LWIR images are similar to those of visible light images, but with different parameterizations. Using this difference, we exploit the power of NSS to successfully distinguish between LWIR images and visible light images. In addition, we study distortions unique to LWIR and find directional models useful for detecting the halo effect, simple bandpass models useful for detecting hotspots, and combinations of these models useful for measuring the degree of non-uniformity present in many LWIR images. For local distortion identification and measurement, we also describe a method for generating distortion maps using NSS features. To facilitate our evaluation, we analyze the NSS of LWIR images under pristine and distorted conditions, using four databases, each captured with a different IR camera. Predicting human performance for assessing distortion and quality in LWIR images is critical for task efficacy. We find that NSS features improve human targeting task performance prediction. Furthermore, we conducted a human study on the perceptual quality of noise-and blur-distorted LWIR images and create a new blind image quality predictor for IR images 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Bovik, Alan Conrad  |e verfasserin  |4 aut 
700 1 |a Paulter, Nicholas G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 1 vom: 09. Jan., Seite 65-79  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:1  |g day:09  |g month:01  |g pages:65-79 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2496289  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 1  |b 09  |c 01  |h 65-79