|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM25436716X |
003 |
DE-627 |
005 |
20231224172222.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2015.2496183
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0847.xml
|
035 |
|
|
|a (DE-627)NLM25436716X
|
035 |
|
|
|a (NLM)26540684
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a de Jong, Markus A
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.10.2016
|
500 |
|
|
|a Date Revised 30.12.2016
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In this paper, we present a novel approach to automatic 3D facial landmarking using 2D Gabor wavelets. Our algorithm considers the face to be a surface and uses map projections to derive 2D features from raw data. Extracted features include texture, relief map, and transformations thereof. We extend an established 2D landmarking method for simultaneous evaluation of these data. The method is validated by performing landmarking experiments on two data sets using 21 landmarks and compared with an active shape model implementation. On average, landmarking error for our method was 1.9 mm, whereas the active shape model resulted in an average landmarking error of 2.3 mm. A second study investigating facial shape heritability in related individuals concludes that automatic landmarking is on par with manual landmarking for some landmarks. Our algorithm can be trained in 30 min to automatically landmark 3D facial data sets of any size, and allows for fast and robust landmarking of 3D faces
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Wollstein, Andreas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ruff, Clifford
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dunaway, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hysi, Pirro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Spector, Tim
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan Liu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niessen, Wiro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koudstaal, Maarten J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kayser, Manfred
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wolvius, Eppo B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bohringer, Stefan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 25(2016), 2 vom: 09. Feb., Seite 580-8
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2016
|g number:2
|g day:09
|g month:02
|g pages:580-8
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2015.2496183
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2016
|e 2
|b 09
|c 02
|h 580-8
|