Probabilistic Social Behavior Analysis by Exploring Body Motion-Based Patterns

Understanding human behavior through nonverbal-based features, is interesting in several applications such as surveillance, ambient assisted living and human-robot interaction. In this article in order to analyze human behaviors in social context, we propose a new approach which explores interrelati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 8 vom: 09. Aug., Seite 1679-91
1. Verfasser: Roudposhti, Kamrad Khoshhal (VerfasserIn)
Weitere Verfasser: Nunes, Urbano, Dias, Jorge
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM254367070
003 DE-627
005 20250219080155.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2496209  |2 doi 
028 5 2 |a pubmed25n0847.xml 
035 |a (DE-627)NLM254367070 
035 |a (NLM)26540675 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Roudposhti, Kamrad Khoshhal  |e verfasserin  |4 aut 
245 1 0 |a Probabilistic Social Behavior Analysis by Exploring Body Motion-Based Patterns 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2018 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Understanding human behavior through nonverbal-based features, is interesting in several applications such as surveillance, ambient assisted living and human-robot interaction. In this article in order to analyze human behaviors in social context, we propose a new approach which explores interrelations between body part motions in scenarios with people doing a conversation. The novelty of this method is that we analyze body motion-based features in frequency domain to estimate different human social patterns: Interpersonal Behaviors (IBs) and a Social Role (SR). To analyze the dynamics and interrelations of people's body motions, a human movement descriptor is used to extract discriminative features, and a multi-layer Dynamic Bayesian Network (DBN) technique is proposed to model the existent dependencies. Laban Movement Analysis (LMA) is a well-known human movement descriptor, which provides efficient mid-level information of human body motions. The mid-level information is useful to extract the complex interdependencies. The DBN technique is tested in different scenarios to model the mentioned complex dependencies. The study is applied for obtaining four IBs (Interest, Indicator, Empathy and Emphasis) to estimate one SR (Leading).The obtained results give a good indication of the capabilities of the proposed approach for people interaction analysis with potential applications in human-robot interaction 
650 4 |a Journal Article 
700 1 |a Nunes, Urbano  |e verfasserin  |4 aut 
700 1 |a Dias, Jorge  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 8 vom: 09. Aug., Seite 1679-91  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:8  |g day:09  |g month:08  |g pages:1679-91 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2496209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 8  |b 09  |c 08  |h 1679-91