Semantic-Aware Co-Indexing for Image Retrieval

In content-based image retrieval, inverted indexes allow fast access to database images and summarize all knowledge about the database. Indexing multiple clues of image contents allows retrieval algorithms search for relevant images from different perspectives, which is appealing to deliver satisfac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 12 vom: 21. Dez., Seite 2573-87
1. Verfasser: Zhang, Shiliang (VerfasserIn)
Weitere Verfasser: Yang, Ming, Wang, Xiaoyu, Lin, Yuanqing, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM254359108
003 DE-627
005 20231224172212.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2417573  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254359108 
035 |a (NLM)26539859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Shiliang  |e verfasserin  |4 aut 
245 1 0 |a Semantic-Aware Co-Indexing for Image Retrieval 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.02.2016 
500 |a Date Revised 06.11.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In content-based image retrieval, inverted indexes allow fast access to database images and summarize all knowledge about the database. Indexing multiple clues of image contents allows retrieval algorithms search for relevant images from different perspectives, which is appealing to deliver satisfactory user experiences. However, when incorporating diverse image features during online retrieval, it is challenging to ensure retrieval efficiency and scalability. In this paper, for large-scale image retrieval, we propose a semantic-aware co-indexing algorithm to jointly embed two strong cues into the inverted indexes: 1) local invariant features that are robust to delineate low-level image contents, and 2) semantic attributes from large-scale object recognition that may reveal image semantic meanings. Specifically, for an initial set of inverted indexes of local features, we utilize semantic attributes to filter out isolated images and insert semantically similar images to this initial set. Encoding these two distinct and complementary cues together effectively enhances the discriminative capability of inverted indexes. Such co-indexing operations are totally off-line and introduce small computation overhead to online retrieval, because only local features but no semantic attributes are employed for the query. Hence, this co-indexing is different from existing image retrieval methods fusing multiple features or retrieval results. Extensive experiments and comparisons with recent retrieval methods manifest the competitive performance of our method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Ming  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaoyu  |e verfasserin  |4 aut 
700 1 |a Lin, Yuanqing  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 12 vom: 21. Dez., Seite 2573-87  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:12  |g day:21  |g month:12  |g pages:2573-87 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2417573  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 12  |b 21  |c 12  |h 2573-87