Co-Segmentation Guided Hough Transform for Robust Feature Matching

We present an algorithm that integrates image co-segmentation into feature matching, and can robustly yield accurate and dense feature correspondences. Inspired by the fact that correct feature correspondences on the same object typically have coherent transformations, we cast the task of feature ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 12 vom: 21. Dez., Seite 2388-401
1. Verfasser: Chen, Hsin-Yi (VerfasserIn)
Weitere Verfasser: Lin, Yen-Yu, Chen, Bing-Yu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM254358969
003 DE-627
005 20231224172212.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2420556  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254358969 
035 |a (NLM)26539845 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hsin-Yi  |e verfasserin  |4 aut 
245 1 0 |a Co-Segmentation Guided Hough Transform for Robust Feature Matching 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.02.2016 
500 |a Date Revised 06.11.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an algorithm that integrates image co-segmentation into feature matching, and can robustly yield accurate and dense feature correspondences. Inspired by the fact that correct feature correspondences on the same object typically have coherent transformations, we cast the task of feature matching as a density estimation problem in the homography space. Specifically, we project the homographies of correspondence candidates into the parametric Hough space, in which geometric verification of correspondences can be activated by voting. The precision of matching is then boosted. On the other hand, we leverage image co-segmentation, which discovers object boundaries, to determine relevant voters and speed up Hough voting. In addition, correspondence enrichment can be achieved by inferring the concerted homographies that are propagated between the features within the same segments. The recall is hence increased. In our approach, feature matching and image co-segmentation are tightly coupled. Through an iterative optimization process, more and more correct correspondences are detected owing to object boundaries revealed by co-segmentation. The proposed approach is comprehensively evaluated. Promising experimental results on four datasets manifest its effectiveness 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lin, Yen-Yu  |e verfasserin  |4 aut 
700 1 |a Chen, Bing-Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 12 vom: 21. Dez., Seite 2388-401  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:12  |g day:21  |g month:12  |g pages:2388-401 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2420556  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 12  |b 21  |c 12  |h 2388-401