Magnetic-Responsive Release Controlled by Hot Spot Effect
Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician's will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the p...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 31(2015), 46 vom: 24. Nov., Seite 12777-82 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Acrylamides Acrylic Resins Delayed-Action Preparations poly-N-isopropylacrylamide 25189-55-3 Silicon Dioxide 7631-86-9 Fluorescein mehr... |
Zusammenfassung: | Magnetically triggered drug delivery nanodevices have attracted great attention in nanomedicine, as they can feature as smart carriers releasing their payload at clinician's will. The key principle of these devices is based on the properties of magnetic cores to generate thermal energy in the presence of an alternating magnetic field. Then, the temperature increase triggers the drug release. Despite this potential, the rapid heat dissipation in living tissues is a serious hindrance for their clinical application. It is hypothesized that magnetic cores could act as hot spots, this is, produce enough heat to trigger the release without the necessity to increase the global temperature. Herein, a nanocarrier has been designed to respond when the temperature reaches 43 °C. This material has been able to release its payload under an alternating magnetic field without the need of increasing the global temperature of the environment, proving the efficacy of the hot spot mechanism in magnetic-responsive drug delivery devices |
---|---|
Beschreibung: | Date Completed 06.09.2016 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b03470 |