Depth Analogy : Data-Driven Approach for Single Image Depth Estimation Using Gradient Samples

Inferring scene depth from a single monocular image is a highly ill-posed problem in computer vision. This paper presents a new gradient-domain approach, called depth analogy, that makes use of analogy as a means for synthesizing a target depth field, when a collection of RGB-D image pairs is given...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 24. Dez., Seite 5953-66
1. Verfasser: Choi, Sunghwan (VerfasserIn)
Weitere Verfasser: Min, Dongbo, Ham, Bumsub, Kim, Youngjung, Oh, Changjae, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM254291457
003 DE-627
005 20250219075024.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2495261  |2 doi 
028 5 2 |a pubmed25n0847.xml 
035 |a (DE-627)NLM254291457 
035 |a (NLM)26529766 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Choi, Sunghwan  |e verfasserin  |4 aut 
245 1 0 |a Depth Analogy  |b Data-Driven Approach for Single Image Depth Estimation Using Gradient Samples 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inferring scene depth from a single monocular image is a highly ill-posed problem in computer vision. This paper presents a new gradient-domain approach, called depth analogy, that makes use of analogy as a means for synthesizing a target depth field, when a collection of RGB-D image pairs is given as training data. Specifically, the proposed method employs a non-parametric learning process that creates an analogous depth field by sampling reliable depth gradients using visual correspondence established on training image pairs. Unlike existing data-driven approaches that directly select depth values from training data, our framework transfers depth gradients as reconstruction cues, which are then integrated by the Poisson reconstruction. The performance of most conventional approaches relies heavily on the training RGB-D data used in the process, and such a dependency severely degenerates the quality of reconstructed depth maps when the desired depth distribution of an input image is quite different from that of the training data, e.g., outdoor versus indoor scenes. Our key observation is that using depth gradients in the reconstruction is less sensitive to scene characteristics, providing better cues for depth recovery. Thus, our gradient-domain approach can support a great variety of training range datasets that involve substantial appearance and geometric variations. The experimental results demonstrate that our (depth) gradient-domain approach outperforms existing data-driven approaches directly working on depth domain, even when only uncorrelated training datasets are available 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
700 1 |a Kim, Youngjung  |e verfasserin  |4 aut 
700 1 |a Oh, Changjae  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 24. Dez., Seite 5953-66  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:24  |g month:12  |g pages:5953-66 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2495261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 24  |c 12  |h 5953-66