Salient Region Detection via High-Dimensional Color Transform and Local Spatial Support

In this paper, we introduce a novel approach to automatically detect salient regions in an image. Our approach consists of global and local features, which complement each other to compute a saliency map. The first key idea of our work is to create a saliency map of an image by using a linear combin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 1 vom: 24. Jan., Seite 9-23
1. Verfasser: Kim, Jiwhan (VerfasserIn)
Weitere Verfasser: Han, Dongyoon, Tai, Yu-Wing, Kim, Junmo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM254291430
003 DE-627
005 20231224172047.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2495122  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254291430 
035 |a (NLM)26529764 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jiwhan  |e verfasserin  |4 aut 
245 1 0 |a Salient Region Detection via High-Dimensional Color Transform and Local Spatial Support 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2016 
500 |a Date Revised 24.11.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we introduce a novel approach to automatically detect salient regions in an image. Our approach consists of global and local features, which complement each other to compute a saliency map. The first key idea of our work is to create a saliency map of an image by using a linear combination of colors in a high-dimensional color space. This is based on an observation that salient regions often have distinctive colors compared with backgrounds in human perception, however, human perception is complicated and highly nonlinear. By mapping the low-dimensional red, green, and blue color to a feature vector in a high-dimensional color space, we show that we can composite an accurate saliency map by finding the optimal linear combination of color coefficients in the high-dimensional color space. To further improve the performance of our saliency estimation, our second key idea is to utilize relative location and color contrast between superpixels as features and to resolve the saliency estimation from a trimap via a learning-based algorithm. The additional local features and learning-based algorithm complement the global estimation from the high-dimensional color transform-based algorithm. The experimental results on three benchmark datasets show that our approach is effective in comparison with the previous state-of-the-art saliency estimation methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Han, Dongyoon  |e verfasserin  |4 aut 
700 1 |a Tai, Yu-Wing  |e verfasserin  |4 aut 
700 1 |a Kim, Junmo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 1 vom: 24. Jan., Seite 9-23  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:1  |g day:24  |g month:01  |g pages:9-23 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2495122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 1  |b 24  |c 01  |h 9-23