Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification

The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 1 vom: 24. Jan., Seite 414-27
1. Verfasser: Yong Luo (VerfasserIn)
Weitere Verfasser: Yonggang Wen, Dacheng Tao, Jie Gui, Chao Xu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM254291422
003 DE-627
005 20231224172047.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2495116  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254291422 
035 |a (NLM)26529763 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yong Luo  |e verfasserin  |4 aut 
245 1 0 |a Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2016 
500 |a Date Revised 11.03.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yonggang Wen  |e verfasserin  |4 aut 
700 1 |a Dacheng Tao  |e verfasserin  |4 aut 
700 1 |a Jie Gui  |e verfasserin  |4 aut 
700 1 |a Chao Xu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 1 vom: 24. Jan., Seite 414-27  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:1  |g day:24  |g month:01  |g pages:414-27 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2495116  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 1  |b 24  |c 01  |h 414-27