Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis

Effective analysis of features in time-varying data is essential in numerous scientific applications. Feature extraction and tracking are two important tasks scientists rely upon to get insights about the dynamic nature of the large scale time-varying data. However, often the complexity of the scien...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 22(2016), 1 vom: 24. Jan., Seite 837-46
1. Verfasser: Dutta, Soumya (VerfasserIn)
Weitere Verfasser: Shen, Han-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM254291104
003 DE-627
005 20231224172047.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2467436  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254291104 
035 |a (NLM)26529731 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dutta, Soumya  |e verfasserin  |4 aut 
245 1 0 |a Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2016 
500 |a Date Revised 04.11.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Effective analysis of features in time-varying data is essential in numerous scientific applications. Feature extraction and tracking are two important tasks scientists rely upon to get insights about the dynamic nature of the large scale time-varying data. However, often the complexity of the scientific phenomena only allows scientists to vaguely define their feature of interest. Furthermore, such features can have varying motion patterns and dynamic evolution over time. As a result, automatic extraction and tracking of features becomes a non-trivial task. In this work, we investigate these issues and propose a distribution driven approach which allows us to construct novel algorithms for reliable feature extraction and tracking with high confidence in the absence of accurate feature definition. We exploit two key properties of an object, motion and similarity to the target feature, and fuse the information gained from them to generate a robust feature-aware classification field at every time step. Tracking of features is done using such classified fields which enhances the accuracy and robustness of the proposed algorithm. The efficacy of our method is demonstrated by successfully applying it on several scientific data sets containing a wide range of dynamic time-varying features 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 22(2016), 1 vom: 24. Jan., Seite 837-46  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:1  |g day:24  |g month:01  |g pages:837-46 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2467436  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 1  |b 24  |c 01  |h 837-46