Automatic Selection of Partitioning Variables for Small Multiple Displays

Effective small multiple displays are created by partitioning a visualization on variables that reveal interesting conditional structure in the data. We propose a method that automatically ranks partitioning variables, allowing analysts to focus on the most promising small multiple displays. Our app...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 22(2016), 1 vom: 24. Jan., Seite 669-77
1. Verfasser: Anand, Anushka (VerfasserIn)
Weitere Verfasser: Talbot, Justin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM254291015
003 DE-627
005 20250219075020.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2467323  |2 doi 
028 5 2 |a pubmed25n0847.xml 
035 |a (DE-627)NLM254291015 
035 |a (NLM)26529722 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Anand, Anushka  |e verfasserin  |4 aut 
245 1 0 |a Automatic Selection of Partitioning Variables for Small Multiple Displays 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2016 
500 |a Date Revised 04.11.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Effective small multiple displays are created by partitioning a visualization on variables that reveal interesting conditional structure in the data. We propose a method that automatically ranks partitioning variables, allowing analysts to focus on the most promising small multiple displays. Our approach is based on a randomized, non-parametric permutation test, which allows us to handle a wide range of quality measures for visual patterns defined on many different visualization types, while discounting spurious patterns. We demonstrate the effectiveness of our approach on scatterplots of real-world, multidimensional datasets 
650 4 |a Journal Article 
700 1 |a Talbot, Justin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 22(2016), 1 vom: 24. Jan., Seite 669-77  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:1  |g day:24  |g month:01  |g pages:669-77 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2467323  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 1  |b 24  |c 01  |h 669-77