Active Exploration of Large 3D Model Repositories

With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a que...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 21(2015), 12 vom: 01. Dez., Seite 1390-402
1. Verfasser: Gao, Lin (VerfasserIn)
Weitere Verfasser: Cao, Yan-Pei, Lai, Yu-Kun, Huang, Hao-Zhi, Kobbelt, Leif, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM254288448
003 DE-627
005 20231224172043.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2014.2369039  |2 doi 
028 5 2 |a pubmed24n0847.xml 
035 |a (DE-627)NLM254288448 
035 |a (NLM)26529460 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Lin  |e verfasserin  |4 aut 
245 1 0 |a Active Exploration of Large 3D Model Repositories 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.02.2016 
500 |a Date Revised 04.11.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cao, Yan-Pei  |e verfasserin  |4 aut 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Huang, Hao-Zhi  |e verfasserin  |4 aut 
700 1 |a Kobbelt, Leif  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 21(2015), 12 vom: 01. Dez., Seite 1390-402  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:21  |g year:2015  |g number:12  |g day:01  |g month:12  |g pages:1390-402 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2014.2369039  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2015  |e 12  |b 01  |c 12  |h 1390-402