HCP : A Flexible CNN Framework for Multi-label Image Classification

Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. I...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 9 vom: 01. Sept., Seite 1901-1907
1. Verfasser: Wei, Yunchao (VerfasserIn)
Weitere Verfasser: Xia, Wei, Lin, Min, Huang, Junshi, Ni, Bingbing, Dong, Jian, Zhao, Yao, Yan, Shuicheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground-truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) the shared CNN is flexible and can be well pre-trained with a large-scale single-label image dataset, e.g., ImageNet; and 4) it may naturally output multi-label prediction results. Experimental results on Pascal VOC 2007 and VOC 2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 90.5% by HCP only and 93.2% after the fusion with our complementary result in [44] based on hand-crafted features on the VOC 2012 dataset
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539