Compartmentalization Approaches in Soft Matter Science : From Nanoreactor Development to Organelle Mimics

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 28(2016), 6 vom: 10. Feb., Seite 1109-28
1. Verfasser: Schoonen, Lise (VerfasserIn)
Weitere Verfasser: van Hest, Jan C M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review biomimetic structures catalysis compartmentalization nanoreactors self-assembly Lipids Micelles mehr... Nucleotides Polymers Proteins Polyethylene Glycols 3WJQ0SDW1A
Beschreibung
Zusammenfassung:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages
Beschreibung:Date Completed 31.10.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201502389