LEADER 01000naa a22002652 4500
001 NLM253996368
003 DE-627
005 20231224171425.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13139  |2 doi 
028 5 2 |a pubmed24n0846.xml 
035 |a (DE-627)NLM253996368 
035 |a (NLM)26499288 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Avitabile, Valerio  |e verfasserin  |4 aut 
245 1 3 |a An integrated pan-tropical biomass map using multiple reference datasets 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.12.2016 
500 |a Date Revised 30.12.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 John Wiley & Sons Ltd. 
520 |a We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a REDD+ 
650 4 |a aboveground biomass 
650 4 |a carbon cycle 
650 4 |a forest inventory 
650 4 |a forest plots 
650 4 |a remote sensing 
650 4 |a satellite mapping 
650 4 |a tropical forest 
700 1 |a Herold, Martin  |e verfasserin  |4 aut 
700 1 |a Heuvelink, Gerard B M  |e verfasserin  |4 aut 
700 1 |a Lewis, Simon L  |e verfasserin  |4 aut 
700 1 |a Phillips, Oliver L  |e verfasserin  |4 aut 
700 1 |a Asner, Gregory P  |e verfasserin  |4 aut 
700 1 |a Armston, John  |e verfasserin  |4 aut 
700 1 |a Ashton, Peter S  |e verfasserin  |4 aut 
700 1 |a Banin, Lindsay  |e verfasserin  |4 aut 
700 1 |a Bayol, Nicolas  |e verfasserin  |4 aut 
700 1 |a Berry, Nicholas J  |e verfasserin  |4 aut 
700 1 |a Boeckx, Pascal  |e verfasserin  |4 aut 
700 1 |a de Jong, Bernardus H J  |e verfasserin  |4 aut 
700 1 |a DeVries, Ben  |e verfasserin  |4 aut 
700 1 |a Girardin, Cecile A J  |e verfasserin  |4 aut 
700 1 |a Kearsley, Elizabeth  |e verfasserin  |4 aut 
700 1 |a Lindsell, Jeremy A  |e verfasserin  |4 aut 
700 1 |a Lopez-Gonzalez, Gabriela  |e verfasserin  |4 aut 
700 1 |a Lucas, Richard  |e verfasserin  |4 aut 
700 1 |a Malhi, Yadvinder  |e verfasserin  |4 aut 
700 1 |a Morel, Alexandra  |e verfasserin  |4 aut 
700 1 |a Mitchard, Edward T A  |e verfasserin  |4 aut 
700 1 |a Nagy, Laszlo  |e verfasserin  |4 aut 
700 1 |a Qie, Lan  |e verfasserin  |4 aut 
700 1 |a Quinones, Marcela J  |e verfasserin  |4 aut 
700 1 |a Ryan, Casey M  |e verfasserin  |4 aut 
700 1 |a Ferry, Slik J W  |e verfasserin  |4 aut 
700 1 |a Sunderland, Terry  |e verfasserin  |4 aut 
700 1 |a Laurin, Gaia Vaglio  |e verfasserin  |4 aut 
700 1 |a Gatti, Roberto Cazzolla  |e verfasserin  |4 aut 
700 1 |a Valentini, Riccardo  |e verfasserin  |4 aut 
700 1 |a Verbeeck, Hans  |e verfasserin  |4 aut 
700 1 |a Wijaya, Arief  |e verfasserin  |4 aut 
700 1 |a Willcock, Simon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 22(2016), 4 vom: 24. Apr., Seite 1406-20  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:4  |g day:24  |g month:04  |g pages:1406-20 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13139  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 4  |b 24  |c 04  |h 1406-20