Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment
Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite acc...
Veröffentlicht in: | Environmental technology. - 1998. - 37(2016), 9 vom: 20., Seite 1110-21 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't DNRA Leachate anaerobic reactor heterotrophic denitrification sulphur-based autotrophic denitrification Nitrates Sulfur 70FD1KFU70 mehr... |
Zusammenfassung: | Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population |
---|---|
Beschreibung: | Date Completed 13.12.2016 Date Revised 30.12.2016 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2015.1102331 |